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This paper presents an extension ofWeissinger’s method and its use in analyzingmorphing wings. This method is

shown to be ideal for preliminary analyses of these wings due to its speed and adaptability to many disparate wing

geometries. It extends Prandtl’s lifting-line theory to planform wings of arbitrary curvature and chord distribution

and nonideal airfoil cross sections. The problem formulation described herein leads to an integrodifferential

equation for the unknown circulation distribution. It is solved using Gaussian quadrature and a sine-series

representation of this distribution. In this paper, this technique is used to analyze the aerodynamics of a morphable

gull-like wing. Specifically, this wing’s ability to manipulate lift-to-drag efficiency and center of pressure location is

discussed.

Nomenclature

a = wing curvature parameter
b = wing span
Cl = section lift coefficient
Cd = section drag coefficient
CL = wing lift force coefficient
CD = wing drag force coefficient
CY = wing side force coefficient
CL = wing roll moment coefficient
CM = wing pitch moment coefficient
CN = wing yaw moment coefficient
Cl�

= section lift curve slope
c = local chord length
ĉ = local nondimensional chord length
�c = mean aerodynamic chord
�̂c = nondimensional mean aerodynamic chord
G = nondimensional circulation
L = wing lift force
l = section lift force/length
M = number of points used in trapezoidal approximation
m = number of points used in sine-series expansion

of circulation function
Q = dynamic pressure
r = displacement vector
S = wing planform area
Ŝ = nondimensional wing planform area
U1 = free-stream velocity magnitude
v = wind velocity vector
w = downwash velocity
xcg = position of the wing center of gravity
xcp = position of the wing center of pressure
xc=4 = position of the airfoil quarter-chord point
y0 = wing semispan, y coordinate of wingtip
� = wind incidence angle/angle of attack
�0L = angle of attack for zero lift
� = circulation magnitude

� = vorticity vector
" = downwash angle at wing 1=4-chord line
� = nondimensional spanwise coordinate
� = wing aspect ratio
� = nondimensional chordwise coordinate
� = planar density
L = wing roll moment
M = wing pitch moment
N = wing yaw moment

Introduction

T HROUGHOUT the history of aviation, very little of man’s
inspiration for flight has manifested itself in aircraft designs.

Indeed, man-made flight bears little resemblance to avian
morphologies, which are backed by millions of years of evolution.
Birdsmorph their wings and tail in complex,fluidways, in contrast to
the limited range of motion of an aircraft’s control surfaces. Most
aircraft deploy flaps and slats during takeoff and landing in order to
increase lift at slower speeds. This is an example of a configuration
change that occurs continuously during avian flight. A bird’s
morphology allows it to constantly change its wing and tail shapes to
suit flight at a wide range of speeds.

Recently, research and development have begun on a new concept
that challenges current designs: morphing aircraft [1]. A morphing
aircraft is an aircraft capable of controlled, gross shape changes in-
flight, with the purpose of increasing efficiency, versatility, and/or
mission performance. Whereas traditional aircraft are designed as
compromises of various performance needs, a single morphing
aircraft can excel at numerous tasks [2,3]. The same airframe can
morph from a highly efficient glider to a fast, high maneuverability
vehicle. Whereas a traditional wing is designed for high efficiency
over a small range of flight conditions, a morphing wing can adapt to
grossly different altitudes and flight speeds. Morphing technologies
enable new flight capabilities, such as perching, urban navigation,
and indoor flight. These capabilities have heretofore been
unrealizable due to technological limitations. Modern development
of smart structures, adaptive materials, and distributed and adaptive
control theory has opened the door to a host of new aircraft designs
and flight capabilities [4].

These new capabilities are realized by the careful manipulation of
aerodynamic forces and moments. For example, a long endurance
aircraft benefits from a high lift-to-drag ratio, whereas a highly
maneuverable aircraft needs high lift and low (or negative) stability
margins. Highly efficient cruise can be accomplished by morphing
the wing cross sections to maintain high lift-to-drag ratios at vari-
ous flight speeds and altitudes. New capabilities, such as perching,
can be achieved by controlling the degree of separated flow over the
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aircraft’s lifting surfaces [5]. Many of these capabilities require
levels of actuation far exceeding the bounds of conventional aircraft
control surfaces.

Unlike most traditional aircraft, morphing aircraft concepts
require an aerodynamic analysis for both varying flight conditions
and grossly varying geometric configurations. This requirement
demands a preliminary analysis methodology that is fast, accurate,
and reconfigurable, without having to rebuild themesh of the aircraft
or flow field, for example. Consequently, a lifting-line approach is
chosen over a computational fluid dynamics (CFD) approach as the
aerodynamic modeling method. This method effectively breaks the
3-D wing into a series of 2-D airfoils joined by their quarter-chord
curve, as depicted in Fig. 1. The analytic nature of thismethod allows
the wing geometries to be programmed as functions into generic
software environments such asMatlab orC. Consequently, changing
geometry parameters, such as the wing curvature parameter
presented below, may be placed in a software loop in order to
automatically generate many wing geometry variations.

Weissinger’s method for straight, swept wings is the basis of the
present lifting-line theory [6]. His method relates the downwash air
velocity at any given span station on the wing to the sum of the
downwash contributions of the vortex line attached to the quarter-
chord line of the wing and the semi-infinite vortex sheet trailing
behind it. This method does not consider the geometry of the wing
cross sections or the nonplanarity of the wake. An effort is made, as
explained below, to account for the former by introducing real airfoil
data for each of the span stations. Although full 3-D analysis tools
such as panel methods and CFD software do not require a separate
database of airfoil data in this event, computationally it is more
efficient to have these data tabulated beforehand. The method

presented belowonly has to reference these data instead of needing to
recompute them in its algorithm. This method has been extended to
curved wings of a specific (polynomial) form by Prössdorf and
Tordella [7] for stationary wings and by Chiocchia, et al. [8] for
wings in oscillatory motion.

The problem formulation leads to an integrodifferential equation
as shown in the next section. This equation is solved assuming a sine-
series representation of the circulation, which conforms to the
boundary conditions of no circulation at the wingtips. Gaussian
quadrature and the trapezoidal rule are then used to compute the
integrals. This technique results in a relatively high 1=M2 error,
where M is the number of function evaluations; however, this
number may be increased independently from the number of span
stations m used in the aerodynamic calculations, as shown below.
Prössdorf shows that error in the calculated circulation distribution
decreases exponentially with m, assuming that the quarter-chord
curve can be bounded by a polynomial [7].

This analysis is shown to be effective in computing the lift and
drag distributions over a variety of wing geometries. Although this
method assumes no separation effects, it is valid in the Reynolds
number regime of medium-scale UAVs and larger aircraft at
moderate angles of attack, where viscous effects are minimal. This
method’s speed and reconfigurability make it ideal for the
preliminary analysis of morphing wings with a large number of
varying geometrical parameters. This method is also useful in the
construction of an aerodynamic lookup table for use in a aircraft
simulation, for example.

Problem Formulation

A model of the wing geometry and the flow field is developed in
order to formulate the circulation distribution along the span. The
circulation is found by examining the downwash velocity
distribution in the wake of the lifting surface. First, a Cartesian
coordinate system is established such that the positive x direction
points downstream, parallel to the free-stream velocity U1, and the
positive y direction points towards the right wingtip. (Thus, by the
right-hand rule, the positive z direction points outward from the
page.) The quarter chord of the wing is represented by a continuous,
piecewise differentiable function that extends from y��y0 to
y� y0, not necessarily symmetric about the x axis but contained
entirely in the xy plane. The chord and twist distributions are given as
piecewise continuous functions of the spanwise coordinate. The
model of the flow field consists of a bound or lifting vortex at the
quarter-chord curve of the wing and a trailing vortex sheet that
extends to infinity downstream. The downwash at each point in the
flow field is therefore the sum of the velocities induced by the lifting
vortex and the distributed vortex sheet. These two contributions are
shown in Fig. 2, where the geometry is defined in a similar manner to
Prössdorf [7] and DeYoung [9]. Because the flow field is modeled as
a superposition of potential flows, this method only applies when
viscous effects are not significant.

The contributions of the lifting and trailing vortices to the
downwash velocity w can be calculated by the Biot-Savart Law:

v � 1

4�

Z
� � r

jrj3 ds (1)

which gives the fluid velocity at any point displaced from a vortex
element of strength �. Using this law, the downwash caused by
segment ds of the lifting vortex is given by

dw�x; y� � �h ds

4�r3
(2)

where the geometry is defined in Fig. 2a. In terms of the points �x; y�
in the plane of the wing and � �x; �y� along the quarter-chord curve,
Eq. (2) becomes

dw�x; y� � �� �y� �x � �x� �y� � �x0� �y�� �y � y�� d�y
4�f�x � �x� �y��2 � �y � �y�2g3=2 (3)

Fig. 1 Lifting-line theory effectively decouples the 3-D panel problem

into a series of 2-D airfoils.

a)

b) 

θ

d

dΓ

y

x

c/4 curve 

),( yx

),( yx

c/4 curve 

),( yx

h

y

x

r

d

),( yx

Fig. 2 a) Schematic of the downwash contribution by a segment ds of
the lifting vortex. b) Schematic of the downwash contribution by a vortex

filament d� of the tailing vortex system.
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where

�x 0� �y� � d�x�y�
dy

����
y� �y

The downwash caused by an infinitesimal vortex filament d� in the
trailing vortex sheet is given by

dw�x; y� � d�

4�d
�cos �� 1� (4)

where the geometry is defined in Fig. 2b. In terms of the points �x; y�
and � �x; �y�, Equation (4) becomes

dw�x; y� � �0� �y�
4��y� �y�

 
x � �x� �y����������������������������������������������

�x � �x� �y��2 � �y � �y�2
p � 1

!
d�y (5)

where

�0� �y� � d��y�
dy

����
y� �y

Summing Eqs. (3) and (5) and integrating from �y0 to y0 gives the
total downwash at the point �x; y� in the flow field:

w�x; y� � 1

4�

Z
y0

�y0

�0� �y�
y � �y

d�y

� 1

4�

Z
y0

�y0

�0� �y�
y � �y

x � �x� �y����������������������������������������������
�x � �x� �y��2 � �y � �y�2

p d�y

� 1

4�

Z
y0

�y0
�� �y� x � �x� �y� � �x0� �y�� �y � y�

f�x � �x� �y��2 � �y � �y�2g3=2 d �y (6)

The first two integrals in Eq. (6) have singularities at �y� y; however,
only the second integral diverges near the singularity. (The
singularity in the first integral will be addressed below.) To remove
this discontinuity, the first term is added to and subtracted from
Eq. (6), as recommended by DeYoung [9], resulting in

w�x; y� � 1

2�

Z
y0

�y0

�0� �y�
y � �y

d�y

� 1

4�

Z
y0

�y0

�0� �y�
y � �y

"
x � �x� �y����������������������������������������������

�x � �x� �y��2 � �y � �y�2
p � 1

#
d�y

� 1

4�

Z
y0

�y0
�� �y� x � �x� �y� � �x0� �y�� �y � y�

f�x � �x� �y��2 � �y � �y�2g3=2 d �y (7)

which is referred to as the dimensional form of the modified
Weissinger’s method. According to the Pistolesi-Weissinger

condition [6], the overall wind velocity should be tangent to the
plane of thewing at thewing’s 3

4
-chord line. In otherwords, along this

line the downwash angle is equal to the local airfoil’s angle of attack,
which is the sum of the wing’s geometrical twist and its overall angle
of attack. Thus, the downwash velocity w in Eq. (7) should be
evaluated at

x� �x�y� � c�y�
2

(8)

which is half a chord length behind the quarter-chord line. With this
substitution, Eq. (7) becomes

w�y� � 1

2�

Z
y0

�y0

�0� �y�
y� �y

d�y

� 1

4�

Z
y0

�y0

�0� �y�
y� �y

"
�x�y� � �x� �y� � c�y�=2������������������������������������������������������������������������

� �x�y� � �x� �y� � c�y�=2�2 � �y� �y�2
p � 1

#
d�y

� 1

4�

Z
y0

�y0
�� �y� �x�y� � �x� �y� � c�y�=2� �x0� �y�� �y� y�

�� �x�y� � �x� �y� � c�y�=2�2 � �y� �y�2�3=2 d �y (9)

where the downwash is now only a function of the spanwise
coordinate. If the geometry for a straight, swept wing is substituted
into Eq. (9), then the lifting-line formula derived by Weissinger [6]
and DeYoung [9] can be recovered.

Solution Procedure

Equation (9) gives the downwash caused by the lifting vortex and
the trailing vortex sheet at the point y along the 3

4
-chord line; this

downwash should be equal to the upwash felt by the wing due to its
local incidence to the flow. Therefore, the only unknown quantity in
Eq. (9) is the circulation distribution ��y�. Although ��y� has no
explicit solution, it can be approximated to an arbitrary accuracy by a
sine series, as first shown by Multhopp [10]. A transformation to
trigonometric coordinates will then allow the exact integration of the
first term in Eq. (9) and a simplification of the other two terms. The
trapezoidal method is then used to integrate the second and third
terms. As will be shown, the number of terms used in this integration
can be made independent of the number of terms used in the sine-
series representation of ��y�.

It is now convenient to convert Eq. (9) to nondimensional form by
introducing the following dimensionless variables:

�� y

y0
; ��� �y

y0
; G� �

y0U1
; ��� �x

c
; �� w

U1
(10)

Here, it is assumed that all downwash angles are small. In dimension-
less form, Eq. (9) can now be written as

���� � 1

2�

Z
1

�1

G0� ���
� � ��

d ��� 1

4�

Z
1

�1

G0� ���
� � ��

2
64 ����� � ��� ��� � 1

2��������������������������������������������������������������������������������������
� ����� � ��� ��� � 1=2�2 � �y0=c����2�� � ���2

q � 1

3
75 d ��

� 1

4�

�
y0
c���

�
2
Z

1

�1
G� ���

����� � ��� ��� � 1
2
� ��0� ���� �� � ��nh

����� � ��� ��� � 1
2

i
2 � �y0=c����2�� � ���2

o
3=2

d �� (11)

To simplify the integrals in Eq. (11) and cast G� ��� as a sine series, the spanwise coordinates are transformed into angles by the following
definitions:

�v 	 cos�1��� and � 	 cos�1� ��� (12)

For simplicity, let

P��; ��� 	 1

� � ��

� ����� � ��� ��� � 1
2��������������������������������������������������������������������������������

� ����� � ��� ��� � 1
2
�2 � �y0=c����2�� � ���2

q � 1

�
; R��; ��� 	

����� � ��� ��� � 1
2
� ��0� ���� �� � ��

f� ����� � ��� ��� � 1
2
�2 � �y0=c����2�� � ���2g3=2 (13)
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After these substitutions, Eq. (11) becomes

���v� �
1

2�

Z
�

0

G0���
cos� � cos�v

d� � 1

4�

Z
�

0

P��v; ��G0��� d�

� 1

4�

�
y0

c��v�
�

2
Z

�

0

R��v; ��G��� sin� d� (14)

To solve Eq. (14) for the unknown function G���, it is assumed that
G��� can be represented as a sine series of m terms. (Note that this
representation meets the boundary conditions of no circulation at the
wingtips, that is G�0� � G��� � 0.) Let

G��� �
Xm
k�1

ak sin�k��; where ak �
2

�

Z
�

0

G��� sin�k��d�

(15)

Multhopp’s formula [10], based on Gaussian quadrature, is used to
evaluate the integral in Eq. (15). This method will exactly integrate a
sequence of orthogonal functions such as the sine-series
representation of G��� if m points are chosen for the quadrature.
These points must be located at the roots of the next function in the
sequence, sin��m� 1���. Applying this quadrature to Eq. (15) yields

ak �
2

m� 1

Xm
n�1

G��n� sin�k�n�; where �n �
n�

m� 1
(16)

where the �n are the roots of the next function in the sine series.
Therefore,

G��� � 2

m� 1

Xm
n�1

G��n�
Xm
k�1

sin�k�n� sin�k��

G0��� � 2

m� 1

Xm
n�1

G��n�
Xm
k�1

k sin�k�n� cos�k��
(17)

With the definitions

fn��� 	
2

m� 1

Xm
k�1

sin�k�n� sin�k��

hn��� 	
2

m� 1

Xm
k�1

k sin�k�n� cos�k�� Gn 	 G��n�
(18)

Equation (17) can be written as

G��� �
Xm
n�1

Gnfn��� and G0��� �
Xm
n�1

Gnhn��� (19)

Substituting Eqs. (18) and (19) into Eq. (14) gives

���v� �
1

��m� 1�
Xm
n�1

Gn

Xm
k�1

k sin�k�n�
Z

�

0

cos�k��
cos � � cos�v

d�

� 1

4�

Xm
n�1

Gn

Z
�

0

P��v; ��hn��� d�

� 1

4�

�
y0

c��v�
�

2Xm
n�1

Gn

Z
�

0

R��v; ��fn��� sin� d� (20)

Although the first integral has a singularity at �� �v, the integral is
finite and given by the formulaZ

�

0

cos�k��
cos� � cos�v

d�� � sin�k�v�
sin�v

(21)

derived by Glauert [11]. The trapezoidal method is used to evaluate
the second and third integrals in Eq. (20). This formula is given byZ

�

0

F��� d�
 �

M� 1

�
F�0� � F���

2
�
XM
��1

F����
�

(22)

where

�� � ��

M� 1

for a general function F���. The integer M dictates how many
function evaluations are used to compute the integral and is
independent of m, the number of terms in the sine-series
representation of G���. Using Eqs. (21) and (22) to evaluate the
integrals in Eq. (20) gives

���v� �
1

m� 1

Xm
n�1

Gn

Xm
k�1

k sin�k�n� sin�k�v�
sin ’v

� 1

4�M� 1�
Xm
n�1

Gn

�
P��v; 0�hn�0� � P��v; ��hn���

2

�
XM
��1

P��v; ���hn����
�

� 1

4�M� 1�
�

y0
c��v�

�
2Xm
n�1

Gn

XM
��1

R��v; ���fn���� sin��

(23)

The sum in the first term of Eq. (23) has an explicit formula, given by

1

m� 1

Xm
k�1

k sin�k�n� sin�k�v�
sin�v

�
(

m�1
4 sin�v

; n� v
� sin�n

�cos�n�cos�v�2 ; n ≠ v
(24)

Equation (23) relates the airfoil angle of attack at �v to a linear
combination of circulation function evaluations Gn. Since ���� is a
known function, it can be evaluated at m distinct points to create a
system of equations for Gn. Constructing the matrix

A � 1

m� 1

Xm
k�1

k sin�k�n� sin�k�v�
sin�v

� 1

4�M� 1�
�
P��v; 0�hn�0� � P��v; ��hn���

2

�
XM
��1

P��v; ���hn����
�

� 1

4�M� 1�
�

y0
c��v�

�
2XM
��1

R��v; ���fn���� sin�� (25)

where the vnth component is evaluated at �v and �n, Eq. (23)
becomes

� �AG; where ��
���1�

..

.

���m�

2
64

3
75 and G�

G1

..

.

Gm

2
64

3
75 (26)

This is a system of m equations for the unknowns Gn. The vector �
comprises the local angle of attack values at �1; . . . ; �m, and G is a
vector of unknowns. TheGn can be computed by invertingA, and the
circulation distribution can be reconstructed using Eq. (19).

So far, this analysis has assumed that the airfoil cross sections of
the wing are ideal; that is, they have a lift curve slope of 2� and
generate no lift at a zero-degree angle of attack. It is desired to
incorporate real airfoil data into this lifting-line analysis in order to
predict better the lift on real aircraft wings. This incorporation will
also help evaluate the effects of airfoil morphing on the entire wing’s
aerodynamic properties. These data may be obtained from experi-
ment or computation; however, as stated previously, they are only
referenced by this algorithm and not recomputed. To assimilate
nonideal airfoils, DeYoung suggests the method of distorting the
chord length distribution along the wing such that the dimensional
circulation about every span station matches the dimensional
circulation of an ideal airfoil with the original chord length [9].
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Alternatively, this can be accomplished by offsetting the left-hand
side of Eq. (23) by the true angle of attack for zero lift of that section
and scaling it by the ratio of its lift curve slope to that of an ideal
airfoil. Consequently, the left-hand side becomes

cl���v�
2�

����v� � �0L��v�� � � � � (27)

The downwash angle at each wing station can now be computed. By
Munk’s analysis [12], the downwash angle is given by half the
downwash angle an infinite distance downstream. To calculate this,
take half the limit of Eq. (7) as x goes to infinity:

1
2
lim
x!1

w�x; y� � 1

4�

Z
y0

�y0

�0� �y�
y � �y

d�y (28)

By converting Eq. (28) to nondimensional form and casting it terms
of the sine-series coefficients, the downwash angle " at station �v is
given by

"��v� �
1

2�m� 1�
Xm
n�1

Gn

Xm
k�1

k sin�k�n� sin�k�v�
sin�v

(29)

which is one half the first term in Eq. (23). With the downwash angle
given by Eq. (29), the overall wind incidence angle
(wing angle of attack� wing twist� downwash angle) can be
computed at each station. Although this angle is computed using
potential theory, it can be used to acquire a good approximation of
section lift and drag forces if real airfoil data are available. The
overall wind incidence angle is used in lieu of the angle of attack in
determining section lift (Cl) and drag (Cd) coefficients. These
coefficients are then rotated back into the xz-coordinate system by
the angle " as given by

xz

�
Cl

Cd

�
� cos " � sin "

sin " cos "

� �
wind Cl

Cd

� �
(30)

where superscript xz indicates the xz-coordinate system and
superscript “wind” indicates the local wind coordinate system.

Using the standard definitions of lift coefficient (CL) and section
lift coefficient (Cl),

CL � L

QS
and Cl �

l

Qc
(31)

a straightforward integration of these coefficients over the entire
wing gives the overall lift and pitchingmoments of thewing. Starting
with the relation between lift and section lift

L�
Z

b=2

�b=2
l dy (32)

the lift coefficient can then be calculated by

CL �
1

Ŝ

Z
1

�1
Clĉ d� (33)

Similarly, the drag coefficient is given by

CD � 1

Ŝ

Z
1

�1
Cdĉ d� (34)

In this problem formulation, side forces are considered negligible;
therefore,

CY � 0 (35)

The moment coefficients are also calculated in a straightforward
manner. Starting from the definitions of pitch, roll, and yawmoment
coefficients,

CM � M
QS �c

; CL � L
QSb

; and CN � N
QSb

(36)

respectively, the moment coefficients can be calculated using the
section lift and drag coefficients as follows:

CM � 1

Ŝ �̂c

Z
1

�1
C1ĉ� d�; CL � 1

2Ŝ

Z
1

�1
C1ĉ� d�

CN � 1

2Ŝ

Z
1

�1
Cdĉ� d�

(37)

Two other important parameters in wing design are the centers of
pressure and gravity. The displacement between these two points is
very important in determining the stability and dynamic response of
the wing in an unsteady flight condition and in determining the
dynamics of the overall aircraft system. In the context of the
prescribed geometry, the center of pressure relative to the origin is
calculated as follows:

Lxcp �M xcp �
1

L

Z
b=2

�b=2
lxc=4 dy (38)

Similarly, the center of gravity is equal to

xcg �
R b=2
�b=2 �x dyR b=2
�b=2 � dy

�
R b=2
�b=2 c

2x dyR b=2
�b=2 c

2 dy
(39)

Here, it is assumed that the density of the wing is constant, which
leads to a square variation of mass with respect to chord length.

Results

Using the methods described in the previous section, circulation,
downwash, and force distributions are calculated for several wing
shapes, as well as overall wing parameters such lift, drag, and center
of pressure location. This method’s relatively loose requirements for
wing geometry enable some nontraditional wings to be analyzed.
Along the vein of bioinspiration, a gull wing shape is chosen as the
basis of this analysis. Thiswing features forward- and aft-swept wing
sections that can be utilized for c.g. and c.p. adjustments, as discussed
below. The wing is described by the quarter-chord curve

x�y� � a

��
y

ky0

�
4

�
�

y

ky0

�
2
�

(40)

and shown in Fig. 3 for various values of curvature parameter a. (A

value of k� ��������
3=7

p
is chosen in order to maintain a constant c.g.

location for all values of a, assuming a constant density wing as
described previously.) For this analysis, every wing shape is
constructed using an elliptical chord distribution such that a direct
comparison of thesewingswith the canonical straight, elliptical wing
can be made. Also, the same root chord length is used throughout in
order tomaintain a constant aspect ratio of 10. Although this analysis
may be used for any angle of attack within the range of validity of

Fig. 3 Gull wings of constant span with curvature parameter a� 0,
0.1, 0.2.
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linear theory, an angle of attack of 3 deg will be used subsequently as
a point for comparison.

As an example, the three wings depicted in Fig. 3 are analyzed
using this lifting-line theory and compared in Figs. 4–7, using
m�M� 101. Figure 4 shows the circulation distributions ��y� for
various values of curvature parameter a. As a increases, the
circulation increases towards the center, where the wing behaves
locally as a forward-swept wing, whereas towards the wingtips the
aft sweep of the wing causes a local reduction in circulation,
compared with the elliptical distribution of the straight wing case.
The downwash angle "�y�, computed from Eq. (39), is plotted in
Fig. 5. The downwash is nearly constant in the case of the straight
elliptical wing (a� 0), as predicted by Prandtl [13] and Munk [12].
As the wing curvature increases, downwash on the forward-swept
sections of the wing increases while decreasing across the aft-swept
portions. Similar effects of swept curvature on downwash angle have
been shown for parabolic wings by Prössdorf and Tordella. They
note that the largest decrease in induced velocity occurs towards the
wingtips [7]. Figure 6 is a plot of the lift force per unit length

distribution across the same three gull wings, whereas Fig. 7 displays
the drag force. As expected, the lift and drag distributions are both
elliptical for the straight wing case. The lift distributions are
approximately equal to the circulation distributions, scaled by a
factor of 	U1, because in all cases the downwash angles are small.
Similarly, the drag distributions follow the same patterns as the
downwash angle distributions. These plots indicate the gull wing’s
ability to shift the center of lift forward as the wing morphs from
straight to curved, although a drag penalty is incurred.

The preceding comparison of several gull wings of constant span
(and aspect ratio) is desired from a purely theoretical stance because
aspect ratio is an important nondimensional parameter when
discussing finite wings. For example, aspect ratio is a major factor in
comparing the lift-to-drag ratios of several wings of similar shape.
However, when developing and analyzingmorphingwing designs, a
constant aspect ratio is often difficult to maintain due to practical
limits on planformdeformation.Variable-sweptwing aircraft such as
the F-111 and the F-14 clearly exemplify the reduction in aspect ratio
that morphing wing technologies suffer. To return to the previous
example, Fig. 8 depicts several gull wings of the same curvature
parameters as before but now with constant arc length. These wings
more clearly illustrate the deformations caused by bending a straight
wing along the quarter-chord line in order to achieve a gull-like
geometry. Once again these wings are curved in such a way as to
maintain a constant center of gravity location. These wings are
compared with the wings depicted in Fig. 3 in Table 1 below. As
expected, the wings of smaller aspect ratio have reduced lift-to-drag
efficiency. This effect is much greater than merely changing the
curvature of constant aspect ratio wings. Also note that there is a
maximum in drag force within this range of curvature parameter for
wings of constant span. Initially drag increases with curvature due to
added downwash over the forward-swept sections of the wing;
however, at higher curvatures this is mitigated by the reduced
downwash over the highly aft-swept wingtip sections.

Fig. 4 Circulation distribution of several gull wings, �� 10,
�� 3 deg.

Fig. 5 Downwash angle distribution of several gull wings, �� 10,
�� 3 deg.

Fig. 6 Lift per unit length distribution of several gull wings, �� 10,
�� 3 deg.

Fig. 7 Drag per unit length distribution of several gull wings, �� 10,
�� 3 deg.

Fig. 8 Gull wings of constant arc length with curvature parameter

a� 0, 0.1, 0.2.
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As shown by Table 1, morphing a straight wing into a gull-like
configuration is useful for lift reduction for higher speed flight. For
example, a high endurance reconnaissance aircraft may morph its
wings by increasing their curvature parameter a in order to perform a
high-speed dive in order to evade an enemy. The added feature of
forward- and aft-swept wing sections allows the manipulation of the
center of pressure if wing twist can be commanded as a function of
span. Figure 9 shows the variation in centers of pressure and gravity
with curvature parameter for gull wings of constant wingspan.
Untwisted wings, like those discussed above, are compared with
twisted wings with twist distributions of the form

��y� � �max sin

�
�

k
jyj
�

(41)

where once again k� ��������
3=7

p
. Figure 9 indicates that with a

maximum twist of only 5 deg, the center of pressure can be shifted
forward by 18% of the root chord while not moving the center of
gravity. Thus, a change in wing configuration from straight to gull
can be used to reduce the static margin of the aircraft, for example.

Conclusion

An extension of Weissinger’s method to curved wings provides a
useful analysis tool for the preliminary design of morphing wings.
This method can be easily applied to wings whose geometry can be
described by piecewise analytical functions. The analytical nature of
this technique allows specific geometrical parameters to be varied
and their effects on the wing’s aerodynamics to be analyzed;
however, caution must be taken when considering flows where

viscous effects dominate. In this paper, a morphing gull wing is
analyzed in the cases of both constant span and constant arc length. It
is shown that increased curvature of the wing results in reduced lift
and lift-to-drag efficiency, confirming this morphology’s usefulness
in loiter to high-speed dash reconfiguration. Also, this wing’s ability
to manipulate its center of pressure location relative to its center of
gravity is discussed. Each of these studies demonstrates the
usefulness of this analysis technique, as long as the bounds of this
method’s validity are not overstepped.
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Table 1 Comparison of several gull wings

Wings of constant span Wings of constant arc length

a Lift, N Drag, N Lift/Drag Lift, N Drag, N Lift/Drag
0 0.0645 5:436e � 4 118.6 0.0645 5:436e � 4 118.6
0.1 0.0695 6:296e � 4 110.3 0.063 7:287e � 4 86.45
0.2 0.0688 6:248e � 4 110.0 0.0417 8:999e � 4 46.31
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